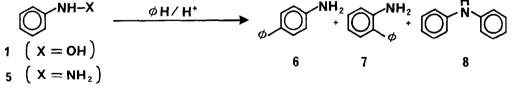

A TRIFLUOROMETHANESULFONIC ACID-CATALYZED REACTION OF ARYLHYDRAZINES WITH BENZENE

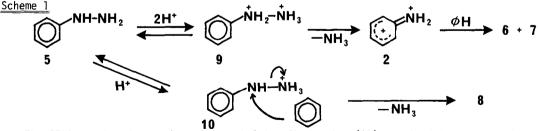
Toshiharu OHTA, Shinji MIYAKE and Koichi SHUDO*


Faculty of Pharmaceutical Sciences, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

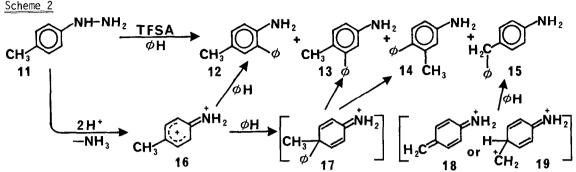
<u>Abstract</u>: Arylhydrazines reacted with benzene in the presence of trifluoromethanesulfonic acid (TFSA) to give aminobiphenyls. This is a general method for the synthesis of aminobiphenyls.

N-Phenylhydroxylamine (<u>1</u>) gives an iminium-benzenium dication (<u>2</u>) after N,O-diprotonation by trifluoromethanesulfonic acid (TFSA) followed by elimination of a water molecule (eq 1), ¹ and O-phenylhydroxylamine (<u>3</u>) gives a phenoxenium ion (<u>4</u>) by N-protonation and elimination of an ammonia molecule (eq 2).² It seems very likely that phenylhydrazine having an N-N bond instead of the N-O bond of hydroxylamine would give <u>2</u> by a similar process, because diprotonations of hydrazine, hydrazobenzene and azobenzene have been reported. ^{1,3,4}

To this end, phenylhydrazine (5) was treated with TFSA and/or trifluoroacetic acid (TFA) in benzene.⁵ The reaction conditions and results are summarized in the Table. The results of TFA- and TFSA-catalyzed reaction of N-phenylhydroxylamine (1) with benzene were reported previously,^{1,6} and are also shown in the Table (runs 1-3). The TFSA-catalyzed reaction of 1 with benzene gave diphenylamine (8) as a main product (run 1), and increasing the acidity of the catalyst by adding a small amount of TFSA (a stronger acid than TFA) to TFA decreased the yield of 8 and increased the yields of biphenylamines (6 and 7) (run 2). When TFSA was sub-

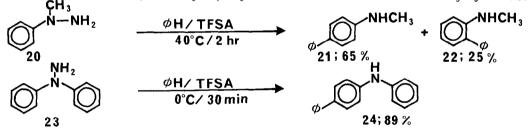

	Reaction Conditions						Products (%) ^b		
Run	Compound	benzene	TFSA	TFA	temp	time	6	7	<u>8</u>
1	<u>1</u>	9.0 ^a	0 ^a	10.0 ^a	RT	12 h	9	8	56
2	1	22.5	2.3	25.0	5°C	30 m	46	25	14
3	1	60.0	20.0	0	5°C	30 m	48	23	1
4	<u>5</u>	60.0	0	30.0	80°C	24 h	0	0	0 ^C
5	<u>5</u>	60.0	20.0	10.0	80°C	5 h	5	2	2 ^C
6	<u>5</u>	60.0	30.0	0	80°C	6 h	42	22	20
7	<u>5</u>	60.0	30.0	0	40°C	24 h	39	22	17

<u>Table</u> Acid-Catalyzed Reactions of N-Phenylhydroxylamine (<u>1</u>) and Phenylhydrazine (<u>5</u>) with Benzene

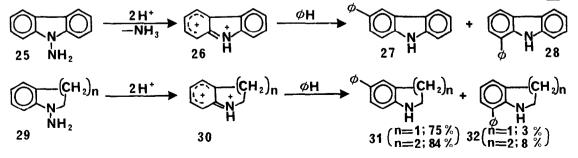

a; Moles per mole of 1 or 5. b; Based on VPC. C; Unreacted 5 was recovered.

stituted for TFA in the reaction of 1, only biphenylamines were formed (run 3). In contrast to the reaction of 1, acid-catalyzed reactions of 5 were very slow. Using only TFA as the catalyst, no reaction occurred even after heating at 80°C for 24 hr (run 4). When TFSA was used in the reaction, heating and a long reaction time were required (80°C, 6 hr or 40°C, 24 hr), and a mixture of aminobiphenyls (\sim 60%) and diphenylamine (\sim 20%) was obtained (runs 6 and 7).

In the case of the reaction of $\underline{1}$ with benzene, the formation of $\underline{6}$ and $\underline{7}$ can be explained by an electrophilic attack of $\underline{2}$ on benzene, and the formation of $\underline{8}$ can be explained by an S_N^2 like nucleophilic attack of the benzene molecule on the nitrogen atom of the 0-protonated N-phenylhydroxylamine. <u>Ortho/para</u> ratios of biphenylamines formed in the reactions of $\underline{1}$ and $\underline{5}$ were about the same ($^0.5$), so that the same intermediate, i.e., $\underline{2}$, was also deduced to be in the TFSA-catalyzed reaction of $\underline{5}$. Therefore a similar mechanism for the reaction of $\underline{5}$, where an ammonia molecule is eliminated instead of a water molecule, might be justified (Scheme 1). The ammonia molecule is a poorer leaving group than the water molecule, so that the formation of $\underline{2}$ from $\underline{9}$ was slow and the nucleophilic attack of benzene on the nitrogen atom of the monoprotonated phenylhydrazine ($\underline{10}$) competed with the formation of $\underline{2}$.

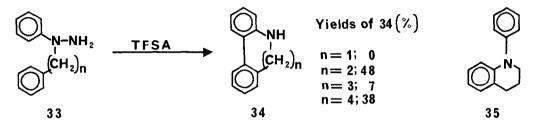


The TFSA-catalyzed reaction of 4-methylphenylhydrazine (<u>11</u>) provided important evidence concerning the mechanism of the reaction of phenylhydrazines. <u>11</u> reacted with benzene in the presence of TFSA (30 eqt) faster than <u>5</u> (at 5°C for 30 min), and gave <u>12</u> (36%), <u>13</u> (26%), <u>14</u> (trace) and <u>15</u> (9%) (Scheme 2). Although <u>13</u> may formally be regarded as being produced by



<u>meta</u> substitution, the presence of <u>14</u> in the reaction mixture suggests that <u>13</u> and <u>14</u> are formed by rearrangement of an intermediate (<u>17</u>), the phenyl group being a better migrating group than the methyl group. The formation of <u>15</u> is considered to arise from the reaction of <u>18</u> or <u>19</u> with benzene. A similar mixture of products corresponding to <u>12</u>, <u>13</u>, <u>14</u> and <u>15</u> was also obtained from the TFSA-catalyzed reaction of N-(4-methylphenyl)hydroxylamine and N,N-dimethyl-p-toluidine N-oxide with benzene.^{1,7} The result of the reaction of <u>11</u> strongly supports the formation of iminium-benzenium dications from phenylhydrazines in TFSA.

 α -Methylphenylhydrazine (20) also smoothly reacted with benzene (60 eqt) in the presence of TFSA (30 eqt) and gave methylaminobiphenyls (21 and 22) and no diphenylamines. Using a similar procedure to the above, N-aminodiphenylamine (23) also reacted with benzene to give 4-phenyldiphenylamine (24) in 89% yield. Introducing a methyl or a phenyl group at the α nitrogen atom or the <u>para</u> position of the benzene ring of 5 seemed to accelerate the rate of formation of the dications, and only biphenylamines were obtained from these arylhydrazines.



Next we applied this reaction to the phenylation of some heterocyclic compounds. N-Aminocarbazole ($\underline{25}$), which was prepared by N-nitrosation of a carbazole followed by reduction with TiCl₄/Mg,⁸ reacted with benzene (60 eqt) in the presence of TFSA (30 eqt) at 5°C for 1 hr to give phenylcarbazoles ($\underline{27}$; 54% and $\underline{28}$; 15%). By a similar procedure, N-aminoindoline (29;

n=1) and N-amino-1,2,3,4-tetrahydroquinoline (29; n=2) were also phenylated. The sites of phenylation of these compounds were fully characterized by ¹H-NMR and could be explained in terms of involvement of the iminium-benzenium dications (26 and 30).

Finally we wish to describe an application of this process to intramolecular phenylphenyl bond formation of hydrazines $(33)^9$ to cyclic compounds (34). Although N-amino-Nbenzylaniline (33; n=1) did not cyclize under any conditions tested, treatment of N-amino-Nphenethylaniline (33; n=2; 2.6 mmole) in TFSA (25 mL) at 80°C for 30 min gave the desired dibenz[b,d]azepine (34; n=2) in 48% yield. N-Amino-N-phenylpropylaniline (33; n=3) also cyclized to dibenz[b,d]azocine (34; n=3) in a low yield, accompanied by 29% yield of N-phenyl-1,2,3,4-tetrahydroquinoline (35) formed by cyclization at the nitrogen atom of 33. N-Amino-N-phenylbutylaniline (33; n=4) also cyclized to dibenz[b,d]azonine in a yield of 38%.

We have thus demonstrated that phenylhydrazine gives the iminium-benzenium dication, and have described some applications to the synthesis of aminobiphenyls. This procedure has the advantage that arylhydrazines are more redily prepared than N-arylhydroxylamines, so that this is a convenient method for the synthesis of aminobiphenyls as well as the reductive phenylation of nitroarenes.¹⁰

We thank Miss Y. Ishihara and Mr. R. Hara for carring out some of the Acknowledgement: experiments described in this paper.

References and Notes

- (a) Okamoto, T.; Shudo, K.; Ohta, T. J. Am. Chem. Soc. 1975, 97, 7184. (b) Shudo. K.: (1)Ohta, T.; Okamoto, T. Ibid. <u>1981</u>, <u>103</u>, 645.
- Endo, Y.; Shudo, K.; Okamoto, T. J. Am. Chem. Soc. 1977, 99, 7721; 1982, 104, 6393. (2)
- (3) Cox, R. A.; Buncel, E. In "The Chemistry of Hydrazo, Azo and Azoxy Groups" Patai, S. Ed.: John Wiley & Sons Inc.: New York, <u>1975</u>; Part 2; Chapter 18.
- Ohta, T.; Shudo, K.; Okamoto, T. Tetrahedron Lett. <u>1977</u>, 101. Satisfactory elemental analyses and/or spectral results (Mass, IR and ¹H-NMR) were (4) (5) obtained for all new compounds.
- (6) (7)
- Okamoto, T.; Shudo, K. Tetrahedron Lett. <u>1973</u>, 4533. Shudo, K.; Ohta, T.; Endo, Y.; Okamoto, T. Tetrahedron Lett. <u>1977</u>, 105. Entwistle, I. D.; Johnstone, A. W.; Wilby, A. H. Tetrahedron <u>1982</u>, <u>38</u>, 419.
- (8) (9)
- 33's were prepared by reduction of corresponding N-nitroso compounds with aqueous titanium trichloride reported by Lunn, G.; Sansone, E. B.; Keefer, L. K. J. Org. Chem. <u>1984</u>, <u>49</u>, 3470.
- Ohta, T.; Machida, R.; Takeda, K.; Endo, Y.; Shudo, K.; Okamoto, T. J. Am. Chem. Soc. (10)<u>1980</u>, 102, 6385.

(Received in Japan 21 September 1985)